

TECHNICAL DATA Datasheet 4165, Rev. B

Three-Phase IGBT BRIDGE, With Gate Driver and Optical Isolation

DESCRIPTION: A 1200 VOLT, 60 AMP, THREE PHASE IGBT BRIDGE

ELECTRICAL CHARACTERISTICS PER IGBT DEVICE

(Tj=25°C UNLESS OTHERWISE SPECIFIED)

ELECTRICAL CHARACTERISTICS FER IGHT DEVICE	CAL CHARACTERISTICS FER IGHT DEVICE (1)=23 C UNLESS OTTERWISE SPECIFIED)			i Loii iLD)	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
IGBT SPECIFICATIONS					
Collector to Emitter Breakdown Voltage	BV _{CES}	1200	-	-	V
$I_C = 500 \mu A, V_{GE} = 0V$					
Continuous Collector Current $T_C = 25$ $^{\circ}$ C	Ic	-	-	60	Α
$T_C = 90$ $^{\circ}C$				40	
Pulsed Collector Current, Pulse Width limited by $T_{j\text{Max}}$	I _{CM}	-	-	100	А
Gate to Emitter Voltage	V_{GE}	-	-	+/-20	V
Gate-Emitter Leakage Current , V _{GE} = +/-20V	I _{GES}	-	-	+/- 200	nA
Zero Gate Voltage Collector Current	I _{CES}	-	-		
$V_{CE} = 1200 \text{ V}, V_{GE} = 0 \text{V} T_i = 25^{\circ}\text{C}$				1	mA
$V_{CE} = 800 \text{ V}, V_{GE} = 0V T_{i} = 125^{\circ}\text{C}$				10	mA
Collector to Emitter Saturation Voltage, $T_j = 25$ °C	V _{CE(SAT)}	-	1.9	2.3	V
$T_{j} = 125 {}^{\circ}C$			2.1	-	
$I_C = 40A$, $V_{GE} = 15V$,					
Maximum Thermal Resistance	$R_{\theta JC}$	-	-	0.6	°C/W
Maximum operating Junction Temperature	T _{jmax}	-40	-	150	°C
Maximum Storage Junction Temperature	T _{jmax}	-55	-	150	°C

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 1 of 6

SENSITRON

TECHNICAL DATA Datasheet 4165, Rev. B

Over-Temperature Shutdown						
Over-Temperature Shutdown	Tsd	90	100	115	°C	
Over-Temperature Output	Tso		10		10mV/°C	
Over-Temperature Shutdown Hysteresis			20		°C	

ULTRAFAST DIODES RATING AND CHARACTE	RISTICS				
Diode Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current, T _C = 90 ^O C	I _F	-	-	40	А
Forward Pulse Current, Pulse Width limited by T_{jMax}	I _{Fp}	-	-	100	А
Diode Forward Voltage, $I_F = 40A$, $T_j = 25$ °C $T_j = 125$ °C	V _F	-	1.8 1.8	2.3	V
Diode Reverse Recovery Time (I _F =40A, V _{RR} =600V , di/dt=800 A/μs)	t _{rr}	-	240	-	nsec
Maximum Thermal Resistance	$R_{ heta JC}$	-	-	1.0	°C/W
Gate Driver					
Supply Voltage	VCC	10	15	20	V
Input On Current	HIN, LIN	2		5.0	mA
Opto-Isolator Logic High Input Threshold	I _{th}	-	1.6	-	mA
Input Reverse Breakdown Voltage	BV _{in}	5.0	-	-	V
Input Forward Voltage @ I _{in} = 5mA	V _F	-	1.5	1.7	V
Under Voltage Lockout	VCCUV	11.5	-	12.5	V
ITRIP Reference Voltage (1)	Itrip-ref	2.5	2.6	2.7	V
Input-to-Output Turn On Delay	t _{ond}	-	TBD	-	nsec
Output Turn On Rise Time	t _r	-	TBD	-	
Input-to-Output Turn Off Delay		-	TBD	-	
Output Turn Off Fall Time	t _{offd}	-	TBD	-	
@ VCC=400V, IC=40A, T _C = 25	t _f				
Input-Output Isolation Voltage	-	1500	-	-	V

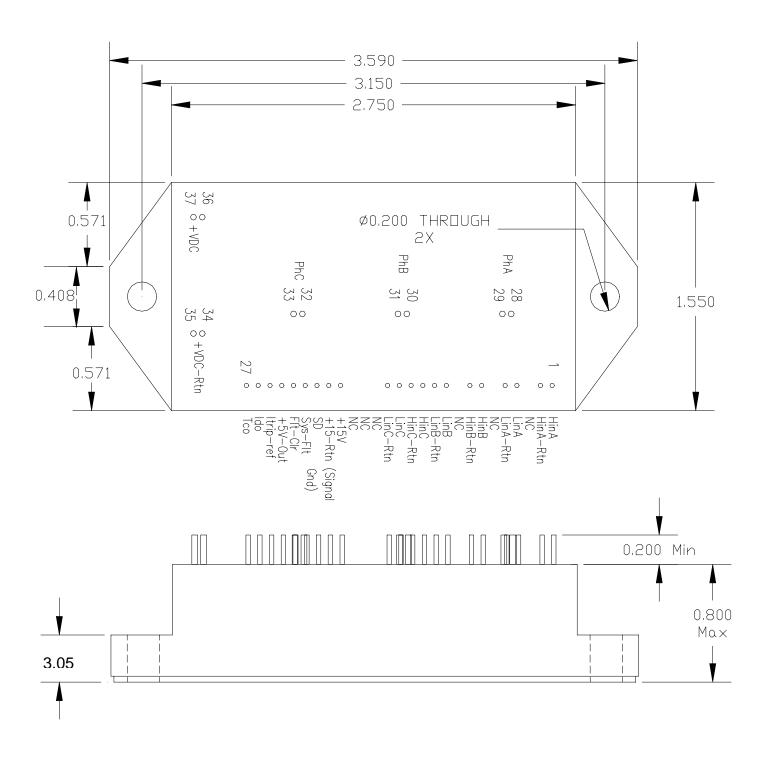
⁽¹⁾ ITRIP Cycle-by cycle current limit is internally set to 43A peak. The set point can be lowered by connecting a resistor between ltrip-ref and Gnd. The set point can be increased by connecting a resistor between ltrip-ref and +5V ref

^{• 221} West Industry Court ■ Deer Park, NY 11729 ■ (631) 586 7600 FAX (631) 242 9798 •

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 2 of 6

SENSITRON

TECHNICAL DATA Datasheet 4165, Rev. B

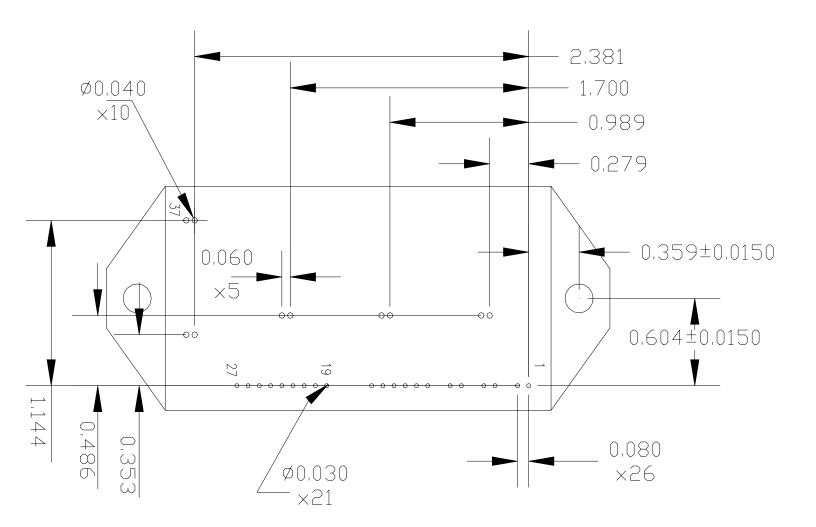

Pin Description

Pin Number	Function	Pin Number	Function		
1	Isolated Input for High-side IGBT of Phase A	18	NC		
2	Return for Input at 1	19	+15V Input		
3	NC	20	+15V Rtn (Signal Ground) (3)		
4	Isolated Input for Low-side IGBT of Phase A	21	SD ⁽³⁾		
5	Return for Input at 4	22	Fault Output (3)		
6	NC	23	Fault Clear Input (3)		
7	Isolated Input for High-side IGBT of Phase B	24	+5V Output		
8	Return for Input at 7	25	Over-Current Trip Set Point (3)		
9	NC	26	DC Bus Current Output with Total Gain of 0.06 V/A		
10	Isolated Input for Low-side IGBT of Phase B	27	Case Temperature Output with Gain of 0.010 V/°C		
11	Return for Input at 10	28 &29	Phase A Output		
12	Isolated Input for High-side IGBT of Phase C	30 & 31	Phase B Output		
13	Return for Input at 12	32 & 33	Phase C Output		
14	Isolated Input for Low-side IGBT of Phase C	34 & 35	DC Bus "+VDC Return"		
15	Return for Input at 14	36 & 37	DC Bus "+VDC" Input		
16	NC	Case	Isolated From All Terminals		
17	NC				

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 3 of 6

TECHNICAL DATA Datasheet 4165, Rev. B

Package Drawing Top View (All dimensions are in inches, tolerance is +/- 0.010")



^{• 221} West Industry Court ■ Deer Park, NY 11729 ■ (631) 586 7600 FAX (631) 242 9798 •

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 4 of 6

TECHNICAL DATA Datasheet 4165, Rev. B

Package Pin Locations (All dimensions are in inches; tolerance is +/- 0.005" unless otherwise specified)

^{• 221} West Industry Court ■ Deer Park, NY 11729 ■ (631) 586 7600 FAX (631) 242 9798 •

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 5 of 6

SENSITRON

TECHNICAL DATA
Datasheet 4165, Rev. B

Application Notes:

a- Shutdown Feature:

- **1-** Pin 21, SD, is a dual function input/output, active low input. It is internally pulled high. As a low input, it shuts down all IGBTs regardless of the Hin and Lin signals.
- **2-** SD is also internally activated by the over-temperature shutdown, over-current limit, under-voltage shutdown, and desaturation protection.
- 3- Over-temperature shutdown, and over-current limit are not latching features.
- **4-** Under-voltage shutdown is automatically reset once the VCC rises above the 12.1V threshold limit.
- **5-** Desaturation shutdown is a latching feature and internally reset.
- 6- When any of the internal protection features is activated, SD is pulled down.
- **7-** SD can be used to shutdown all IGBTs by an external command. An open collector switch shall be used to pull down SD externally.
- 8- Also, SD can be used as a fault condition output. Low output at SD indicates a fault situation.

b- Fault Output Feature:

- 1- Pin 22, Flt is a dual function pin. It is internally pulled high. If pulled down, it will freeze the status of all the six IGBTs regardless of the Hin and Lin signals
- **2-** Pin 22 as an output reports desaturation protection activation. When desaturation protection is activated a low output for about 9 μsec is reported.
- 3- If any other protection feature is activated, it will not be reported by Pin 22.

c- Fault Clear Output:

- **1-** Pin 23, Flt-Clr is a fault clear input. It can be used to reset a latching fault condition, due to desaturation protection.
- **2-** Pin 23 is internally pulled down. A latching fault due to desaturation can be cleared by pulling high this input.
- **3-** An internal fault clear is activated after 100 μ sec delay. If desired to clear the fault earlier, this input can be used.

d- Signal Ground:

Pin 20, Signal Gnd is a the signal ground for all signals at Pins 19 through 27. This ground is internally connected to the +VDC Rtn. No external connection shall be established between Signal Gnd and +VDC Rtn.

[•] World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com • Page 6 of 6